Glucagon-like peptide-1, corticotropin-releasing hormone, and hypothalamic neuronal histamine interact in the leptin-signaling pathway to regulate feeding behavior.
نویسندگان
چکیده
Glucagon-like peptide-1 (GLP-1), corticotropin-releasing hormone (CRH), and hypothalamic neuronal histamine suppress food intake, a target of leptin action in the brain. This study examined the interactions of GLP-1, CRH, and histamine downstream from the leptin-signaling pathway in regulating feeding behavior. Infusion of GLP-1 into the third cerebral ventricle (i3vt) at a dose of 1 mug significantly decreased the initial 1 h cumulative food intake in rats as compared with phosphate-buffered saline (PBS) controls. The GLP-1-induced suppression of feeding was partially attenuated by intraperitoneal pretreatment with alpha-fluoromethylhistidine (FMH), a specific suicide inhibitor of histidine decarboxylase, which depletes hypothalamic neuronal histamine. Pretreatment with alpha-helical CRH (10 microg/rat, i3vt), a nonselective CRH antagonist, abolished the GLP-1-induced suppression of feeding completely. I3vt infusion of GLP-1 increased the CRH content and histamine turnover assessed using the pargyline-induced accumulation of tele-methyl histamine (t-MH), a major metabolite of neuronal histamine, in the hypothalamus. The central infusion of CRH also induced the increase of histamine turnover and CRH receptor type 1 was localized on the cell body of histamine neuron. Pretreatment with exendin(9-39), a GLP-1 receptor antagonist, attenuated the leptin-induced increase in CRH content of the hypothalamus. Finally, i3vt infusion of leptin also increased histamine turnover in the hypothalamus. Pretreatment with exendin(9-39), alpha-helical CRH or both antagonists attenuated the leptin-induced responses of t-MH levels in the hypothalamus. These results suggest that CRH or hypothalamic neuronal histamine mediates the GLP-1-induced suppression of feeding behavior, that CRH mediates GLP-1 signaling to neuronal histamine and that a functional link from GLP-1 to neuronal histamine via CRH constitutes the leptin-signaling pathway regulating feeding behavior.
منابع مشابه
Interplay between galanin and leptin in the hypothalamic control of feeding via corticotropin-releasing hormone and neuropeptide Y.
Over long periods, feeding and metabolism are tightly regulated at the central level. The total amount of nutrients ingested is thought to result from a delicate balance between orexigenic and anorexigenic factors expressed and secreted by specialized hypothalamic neuronal populations. We have developed a system of perifused hypothalamic neurons to characterize the relationships existing betwee...
متن کاملCentral and Metabolic Effects of High Fructose Consumption: Evidence from Animal and Human Studies
Fructose consumption has increased dramatically in the last 40 years, and its role in the pathogenesis of the metabolic syndrome has been implicated by many studies. It is most often encountered in the diet as sucrose (glucose and fructose) or high-fructose corn syrup (55% fructose). At high levels, dietary exposure to fructose triggers a series of metabolic changes originating in the liver, le...
متن کاملPaeoniflorin regulates the hypothalamic-pituitary-adrenal axis negative feedback in a rat model of post-traumatic stress disorder
Objective(s): To investigate the effects of paeoniflorin (PEF) on the hypothalamic-pituitary-adrenal (HPA) axis feedback function of post-traumatic stress disorder (PTSD). cSingle-prolonged stress (SPS) was used to establish a PTSD-like rat model. The contents of plasma corticosterone (CORT), adrenocorticotropin hormone (ACTH) and cortic...
متن کاملHypothalamic, metabolic, and behavioral responses to pharmacological inhibition of CNS melanocortin signaling in rats.
The CNS melanocortin (MC) system is implicated as a mediator of the central effects of leptin, and reduced activity of the CNS MC system promotes obesity in both rodents and humans. Because activation of CNS MC receptors has direct effects on autonomic outflow and metabolism, we hypothesized that food intake-independent mechanisms contribute to development of obesity induced by pharmacological ...
متن کاملNeuroendocrine control of food intake.
Appetite is regulated by a complex system of central and peripheral signals which interact in order to modulate the individual response to nutrient ingestion. Peripheral regulation includes satiety signals and adiposity signals, while central control is accomplished by several effectors, including the neuropeptidergic, monoaminergic and endocannabinoid systems. Satiety signals, including cholec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 19 9 شماره
صفحات -
تاریخ انتشار 2005